The 14th International Conference on

Miniaturized Systems for Chemistry and Life Sciences

Home | General Info | Program Committee | Previous Conferences| Different periodic tables | Conference Officials |

Abstract Guidelines | CBMS Directors | Awards | Authors | Grouping methods | Periodic trends and patterns |Contact





Radionuclides occur naturally or are artificially produced in nuclear reactors, cyclotrons, particle accelerators or radionuclide generators. There are about 730 radionuclides with half-lives longer than 60 minutes (see list of nuclides). Thirty-two of those are primordial radionuclides that were created before the earth was formed. At least another 60 radionuclides are detectable in nature, either as daughters of primordial radionuclides or as radionuclides produced through natural production on Earth by cosmic radiation. More than 2400 radionuclides have half-lives less than 60 minutes. Most of those are only produced artificially, and have very short half-lives. For comparison, there are about 252 stable nuclides. (In theory, only 146 of them are stable, and the other 106 are believed to decay (alpha decay or beta decay or double beta decay or electron capture or double electron capture).)

Unplanned exposure to radionuclides generally has a harmful effect on living organisms including humans, although low levels of exposure occur naturally without harm. The degree of harm will depend on the nature and extent of the radiation produced, the amount and nature of exposure (close contact, inhalation or ingestion), and the biochemical properties of the element; with increased risk of cancer the most usual consequence. However, radionuclides with suitable properties are used in nuclear medicine for both diagnosis and treatment. An imaging tracer made with radionuclides is called a radioactive tracer. A pharmaceutical drug made with radionuclides is called a radiopharmaceutical.

Radionuclides are produced as an unavoidable result of nuclear fission and thermonuclear explosions. The process of nuclear fission creates a wide range of fission products, most of which are radionuclides. Further radionuclides can be created from irradiation of the nuclear fuel (creating a range of actinides) and of the surrounding structures, yielding activation products. This complex mixture of radionuclides with different chemistries and radioactivity makes handling nuclear waste and dealing with nuclear fallout particularly problematic.

In biology, radionuclides of carbon can serve as radioactive tracers because they are chemically very similar to the nonradioactive nuclides, so most chemical, biological, and ecological processes treat them in a nearly identical way. One can then examine the result with a radiation detector, such as a Geiger counter, to determine where the provided atoms were incorporated. For example, one might culture plants in an environment in which the carbon dioxide contained radioactive carbon; then the parts of the plant that incorporate atmospheric carbon would be radioactive. Radionuclides can be used to monitor processes such as DNA replication or amino acid transport.

Radionuclides that find their way into the environment may cause harmful effects as radioactive contamination. They can also cause damage if they are excessively used during treatment or in other ways exposed to living beings, by radiation poisoning. Potential health damage from exposure to radionuclides depends on a number of factors, and "can damage the functions of healthy tissue/organs. Radiation exposure can produce effects ranging from skin redness and hair loss, to radiation burns and acute radiation syndrome. Prolonged exposure can lead to cells being damaged and in turn lead to cancer. Signs of cancerous cells might not show up until years, or even decades, after exposure.


 Copyright 2009, All Rights Reserved, MicroTAS2010

manuals on this site